Chena River Lakes Flood Control Project/Moose Creek Dam, North Pole, Alaska - USACE Design, Cost, And Constructability Considerations For CSM Barrier Walls In The Far North

21 September 2017

Coleman Chalup, P.E.
Lead Engineer
USACE Alaska District

Derek Maxey P.E.
Cost Engineer
USACE DSMMCX

"The views, opinions and findings contained in this report are those of the authors(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other official documentation."

BUILDING STRONG®
Building and Preserving Alaska’s Future
PROJECT BACKGROUND
Authorization, Project Purposes and Current Uses

- Authority: Flood Control Act of August 13, 1968, Public Law 90-483, Section 203, 90th Congress
 - Maximum flow objective of 12,000 cubic feet per second in downtown Fairbanks

- Project Purpose & Warranted
- Continued Federal Interest are the same:
 - Flood Control
 - Recreation
 - Environmental Stewardship

- Total Damages Prevented since 1981
 - $397.6 Million
Project Location & History

- Chena River Floods Fairbanks: 1967
- Congressional Authorization: 1968
- Construction Begins: 1973
- Project Operational: 1979
- Test Fill Operation: 1981
- Operating History: 37 years
- Dam operations to date: 25
- Last Operation: 2016
- Largest operational flood: 1992
Floodway and Dam
Recreational Uses/Benefits

- **Over 165,000 visitors annually**

- **16,000 acres of public land** for dispersed low impact recreational activities and a variety of indigenous wildlife, migratory birds, and waterfowl

- **~25 special use/event permits issued annually** including retriever dog trials, civil war reenactments, triathlons, cross country meets, trail riding, scouting events, and youth conservation camps.

- Almost annually the Project is proud to host a **paralyzed veteran moose hunt** for hunters selected from across the country.

- The **Project partners** with the Fairbanks North Star Borough, Alaska Department of Fish and Game, Bureau of Land Management/Alaska Fire Service, and the U.S Fish and Wildlife on a number of ongoing cooperative projects.
PROJECT FEATURES
Geologic Overview

- Foundation is gravelly sand/sandy gravel that likely exceeds 1000 ft thickness with a surficial blanket of silt.
- The transition from sand and gravel to silt includes layers of sand and silty sand, including fine sand with Cu<3.
- The sand and gravel includes gap graded and open work gravel lenses.
- Sloughs from meanders and braids, as well as permafrost, complicate the near surface geology.
Sand And Gravel

- S&G is very heterogeneous across site
- The foundation materials are “sandy gravel to gravelly sand”
- About 1/4 of S&G samples are gap graded
- Open work gravel is present but rare
- Zones of erodible fine sand are present (Cu ≤ 7)
Permafrost

• Permafrost is soil or bedrock that has been continuously frozen (0°C or less) for at least two years, with or without the presence of ice or water.

• An area of known discontinuous permafrost is present under the central portion of the dam.

• Permafrost excavation similar to rock excavation
Building and Preserving Alaska's Future

Dam Features - General Layout

- Weir
- Embankment and Stability Berm
- Low Point Drain and South Seepage Collector Channel
- Sill
- Floodway
- Control Works
- Low Point Drain
- Relief Wells
Relief Wells

- Six relief wells were installed during original construction
- Current count is 158 Relief Wells
- Relief Wells are a continuing O&M issue
1. Moose Creek is a sand and gravel dam.
2. A high-capacity seepage collection and drainage channel system with a drainage ditch and lateral conduits to convey collected seepage through the stability berm.
3. A downstream stability berm to protect the embankment against heave.
4. A downstream toe drain, consisting of free-draining material.
5. Test relief wells, and greatly increasing the number of relief wells after 1981 test fill.
6. Extensive upstream impervious blanket (enlarged after the 1981 test fill).
Typical Centerline Boring

<table>
<thead>
<tr>
<th>Depth to Groundwater</th>
<th>Depth to Centerline</th>
<th>Depth to Cut-off Wall</th>
<th>Water Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I Fill</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semi-Permous Fill</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type II Fill</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Depth of Cutoff Wall at 465.5 feet NAVD88
DAM SAFETY CONCERNS
Reaches
Dam Safety Issues: Actionable Potential Failure Modes

- Backward Erosion and Piping with Vertical Exit (BEPv)
- Backward Erosion and Piping with Horizontal Exit (BEPh)
- Contact Erosion

Contributing Factors
- Flaw is a continuous fine sand layer
- Roof is a continuous silt layer
- Unfiltered exit is a pre-existing defect or is created during the flood event by blowout of the downstream silt blanket
- Average horizontal gradients are sufficient to initiate BEP
- No upstream flow limiter exists
2014 – 2016 Floods - Sand Boils

Majority of boils found from Station 285+00 to 294+00 (Reach 4) and Station 306+75 to 307+75 (Reach 5)

<table>
<thead>
<tr>
<th>Boil classification</th>
<th>Silt Cone Size Range (Feet)</th>
<th>Typical Throat Size (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small/Pin</td>
<td>0.0 to 0.5</td>
<td>0.25 to 1.0</td>
</tr>
<tr>
<td>Medium</td>
<td>0.5 to 2.0</td>
<td>1.0 to 2.0</td>
</tr>
<tr>
<td>Large</td>
<td>2.0 to 4.0</td>
<td>1.0 to 9.0</td>
</tr>
<tr>
<td>Extra Large</td>
<td>4.0 to 10.0 or larger</td>
<td>4.0 to 12.0</td>
</tr>
</tbody>
</table>

Height of boils ranged from an inch to one foot and typically equalized with tail water level.
PLAN FORMULATION PROCESS
- Found a critical flaw in assumptions made to create a single stage filter material that would work with materials ranging from silt to openwork gravels.
• Mix in Place Cutoff Wall
• New phase took what was learned in Phase I and focused on development of a cutoff wall to address continuous flaw in foundation.
Tentatively Selected Plan
Tentatively Selected Plan

Plan F9:

► Centerline Cutoff Wall: Reaches 4, 5, 6, 8, 9
► Addresses Flaw (biggest risk driver). The Cutoff Wall will interrupt and discontinue the flaw.
► Minimal environmental impacts.
► Less uncertainty with untested embankment performance.
► Meets Planning Objectives (TRG) with High Level of certainty.
► Reduces risk around 1 order of magnitude below Tolerable Risk Guidelines.
Centerline Cutoff Wall (F9)

- Centerline Cutoff Wall in Reaches 4, 5, 6, 8 and 9.
- Extending crest at Low Point Drain.
- Cutoff Wall will not impact expected permafrost under dam.
- Working Platform at crest of dam.
 - Deform Crest to no more than PMF elevation of 525.4 feet NAVD88.
- New instrumentation
 - Piezometers
 - Weir/Flumes

Expected Permafrost

Maximum Deformation of Crest (525.4 NAVD88)
Control Structure and Low Point Drain – Tie-ins

- Cutoff wall will require tie-in with Control Structure located within Reach 7 and Low Point Drain in Reach 5
 - Sheet Pile
 - CSM Wall
Geophysical Investigation

- Ground Penetrating Radar (GPR)
- Capacitively Coupled Resistivity (CCR)
- Electrical Resistivity Tomography (ERT)
- 3 Longitudinal Lines
 - Upstream Dam Toe
 - Centerline
 - Downstream Stability Berm Toe
- 9 Transects

<table>
<thead>
<tr>
<th>9 Transects of Dam</th>
</tr>
</thead>
<tbody>
<tr>
<td>250+00 (Reach 3-4)</td>
</tr>
<tr>
<td>290+00 (Boils/Permafrost)</td>
</tr>
<tr>
<td>320+00 (Reach 4-5)</td>
</tr>
<tr>
<td>338+00 (3-4 feet of silty fine sand)</td>
</tr>
<tr>
<td>380+00 (Reach 5-6)</td>
</tr>
<tr>
<td>399+00 (Old Chena River Slough)</td>
</tr>
<tr>
<td>411+50 (Old Chena River Slough)</td>
</tr>
<tr>
<td>440+00 (Reach 8-9)</td>
</tr>
<tr>
<td>480+00 (Near North Abutment)</td>
</tr>
</tbody>
</table>
Geophysical Results
Geophysical Results

GPR

CCR

ERT

BUILDING STRONG®
Building and Preserving Alaska’s Future
Geotechnical Investigation

Sonic Drilling

- Savannah District sonic rig with Alaska District Engineers.
- Ground truth for geophysics.
- Obtain material for mix design.
- Installation of 3 piezometers.
- Look for aquitard around 90-110 feet below ground surface.
- Test borings are on ~1200 foot intervals. Subject to be adjusted based on findings of geophysical investigation.

Drilling Methods

- Sonic drilling with minimal water through embankment and foundation.
- Continuous sampling to depth of interest.

<table>
<thead>
<tr>
<th>Boring Location</th>
<th>Depth (ft)</th>
<th>Number of Borings</th>
<th>Total Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centerline Dam</td>
<td>90</td>
<td>24</td>
<td>2,160</td>
</tr>
<tr>
<td>Centerline Dam</td>
<td>50</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>Centerline Dam</td>
<td>130</td>
<td>1</td>
<td>130</td>
</tr>
<tr>
<td>Centerline Dam</td>
<td>100</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Upstream Dam</td>
<td>60</td>
<td>2</td>
<td>120</td>
</tr>
<tr>
<td>Downstream Dam</td>
<td>130</td>
<td>14</td>
<td>1,820</td>
</tr>
<tr>
<td>Downstream Dam</td>
<td>60</td>
<td>8</td>
<td>480</td>
</tr>
<tr>
<td></td>
<td>Total:</td>
<td>51</td>
<td>4,860 feet</td>
</tr>
</tbody>
</table>

Additional Borings

<table>
<thead>
<tr>
<th>Boring Location</th>
<th>Depth (ft)</th>
<th>Number of Borings</th>
<th>Total Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downstream Dam</td>
<td>130</td>
<td>2</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>New Total:</td>
<td>72</td>
<td>5120 feet</td>
</tr>
</tbody>
</table>
Unique Site and Climate Conditions
Remote Location

- Fairbanks, AK is modern, modest sized city
 - Big-box stores, chain hotels/restaurants, etc.

- Serves as the northern-most major outpost for equipment, materials, and supplies to oil/gas and mining industries
 - Several large equipment dealers including Caterpillar, etc.

- Shipments from out of state (lower 48, etc.) routed, either:
 - MARINE FERRY -> Alaska State Ferry from Seattle to Alaska -> Highway or Alaska Rail to Fairbanks
 - TRUCK -> ALCAN Highway (difficult, time-intensive)
 - RAIL -> Alaska Rail for in-state transport
Limited Commercial Aggregate Sources

- Generally, transportation of aggregate materials throughout the state is costly and seasonally restricted
- Most large projects are sourced from on-site borrow pits
- Even commercially available aggregates are generally quarried locally, and produced to order
Varied Duration of Daylight Hours

Source: https://www.timeanddate.com/sun/usa/fairbanks
Varied Duration of Daylight Hours

Source: https://www.timeanddate.com/sun/usa/fairbanks
Fairbanks, Alaska

Monthly Averages & Records - °F | °C

<table>
<thead>
<tr>
<th>Date</th>
<th>Average Low</th>
<th>Average High</th>
<th>Record Low</th>
<th>Record High</th>
<th>Average Precipitation</th>
<th>Average Snow</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>-13°</td>
<td>2°</td>
<td>-60° (1969)</td>
<td>47° (1981)</td>
<td>0.61°</td>
<td>7.9°</td>
</tr>
<tr>
<td>February</td>
<td>-10°</td>
<td>10°</td>
<td>-52° (1999)</td>
<td>49° (1980)</td>
<td>0.44°</td>
<td>7.3°</td>
</tr>
<tr>
<td>March</td>
<td>1°</td>
<td>26°</td>
<td>-41° (1971)</td>
<td>57° (1998)</td>
<td>0.34°</td>
<td>6.4°</td>
</tr>
<tr>
<td>April</td>
<td>19°</td>
<td>44°</td>
<td>-24° (1986)</td>
<td>71° (2005)</td>
<td>0.2°</td>
<td>3.5°</td>
</tr>
<tr>
<td>May</td>
<td>35°</td>
<td>61°</td>
<td>3° (1964)</td>
<td>88° (1960)</td>
<td>0.6°</td>
<td>0.4°</td>
</tr>
<tr>
<td>July</td>
<td>50°</td>
<td>73°</td>
<td>32° (1957)</td>
<td>92° (1993)</td>
<td>1.96°</td>
<td>0°</td>
</tr>
<tr>
<td>August</td>
<td>45°</td>
<td>67°</td>
<td>24° (1987)</td>
<td>93° (1994)</td>
<td>1.95°</td>
<td>0°</td>
</tr>
<tr>
<td>September</td>
<td>34°</td>
<td>55°</td>
<td>5° (1992)</td>
<td>82° (1957)</td>
<td>1.32°</td>
<td>0.9°</td>
</tr>
<tr>
<td>October</td>
<td>16°</td>
<td>32°</td>
<td>-27° (1975)</td>
<td>71° (2003)</td>
<td>1.01°</td>
<td>11.5°</td>
</tr>
<tr>
<td>November</td>
<td>-2°</td>
<td>12°</td>
<td>-45° (1990)</td>
<td>49° (1976)</td>
<td>0.78°</td>
<td>15.2°</td>
</tr>
<tr>
<td>December</td>
<td>-9°</td>
<td>5°</td>
<td>-66° (1961)</td>
<td>44° (2001)</td>
<td>0.82°</td>
<td>13°</td>
</tr>
</tbody>
</table>

Source: http://www.intellicast.com
Heave/Frost Jacking

- Relief wells/other feature extending through the frost zone experience significant loading due seasonal frost heave/jacking.
CSM Barrier Wall Construction Methods
Barrier Wall Technologies

- Slurry Trench
 - Clamshell
 - Continuous Chain Trenching
 - Hydraulic Excavator
 - Jet-Grouting
- Cutter Soil Mixing
 - Continuous Chain Trenching
 - Hydromill
 - Secant Pile
 - Multiple auger
- Many more…
1. Moose Creek is a sand and gravel dam.

2. A high-capacity seepage collection and drainage channel system with a drainage ditch and lateral conduits to convey collected seepage through the stability berm.

3. A downstream stability berm to protect the embankment against heave.

4. A downstream toe drain, consisting of free-draining material.

5. Test relief wells, and greatly increasing the number of relief wells after 1981 test fill.

6. Extensive upstream impervious blanket (enlarged after the 1981 test fill).
Moose Creek - Barrier Wall Technologies

- Slurry Trench
 - Clamshell
 - Continuous Chain Trenching
 - Hydraulic Excavator
 - Jet-Grouting

- Cutter Soil Mixing
 - Continuous Chain Trenching
 - Hydromill
 - Secant Pile
 - Multiple auger

- Many more…
Design & Budgeting Considerations

- Several state-of-the-art technologies exist for CSM wall construction
 - Most are proprietary, custom-built machines unique to specific construction firms
 - Some technologies are more competitive than others depending on the wall design and site arrangement.

- Equipment access & hauling materials often drive production
 - Work platform (25'-50' wide) required to accommodate construction traffic around CSM machines
 - Size/arrangement of work platform varies by specific technology employed
 - Accommodations for work platform can be significant $
 - Degrade dam crest
 - Rock fill
 - Paved work surfaces

- Therefore, it is difficult to budget to specific technology AND foster competitive bid market

Herbert Hover Dike - Florida
Far North/Remote Location Considerations

- Availability of machines within industry to mobilize
- Mobilization related costs for specialty equipment
- Winterization/standby related costs for specialty equipment
- Availability within local/regional labor market
- Availability of local/regional construction equipment
 - Haul trucks & teamsters
- Seasonal on-highway load restrictions
- Commercial availability of large quantities of anything… especially aggregates
Cold Weather Considerations for CSM

- Typical civil/earthwork construction season is 7 of 12 months, due to cold temps, snow, and reduced daylight, and DOT highway load restrictions
- CSM work in far north has been successfully demonstrated by industry, including work through winter months.
- Freezing weather reduces production, machines do better in 24/7 operation
- Maintenance of haul routes
For More…

- **USACE Alaska District – Moose Creek Project Website**

- **Chena Google Virtual Project Tour**
 https://www.youtube.com/watch?v=IUwReK5FEfE

- **USACE “AlaskaCorps” YouTube® Channel**
 https://www.youtube.com/user/AlaskaCorps
Chena River Lakes Flood Control Project/Moose Creek Dam, North Pole, Alaska - USACE Design, Cost, And Constructability Considerations For CSM Barrier Walls In The Far North

Questions, Comment, or Discussion?