PERMITTING, LICENSING, AND ENVIRONMENTAL ISSUE RESOLUTION FOR THE SUSITNA-WATANA HYDRO

WAYNE DYOK, H2O ECOPOWER

The Challenges of Dams in Cold Climates
Design, Construction, Permitting and Environmental Issues
Fall 2017 Workshops and Field Tours
The Challenges of Dams in Cold Climates
Design, Construction, Permitting and Environmental Issues
Fall 2017 Workshops and Field Tours

Here comes another one.

First the balls then the club.
The Challenges of Dams in Cold Climates
Design, Construction, Permitting and Environmental Issues

Fall 2017 Workshops and Field Tours
PROJECT HIGHLIGHTS

Susitna-River Mile 184
87 River Miles from Talkeetna
22-32 River Miles upstream from Devils Canyon
42-Mile Reservoir
Average Width of One Mile
~50 Percent of Railbelt’s Energy Demand
(2800 GWH of annual energy)
Dam Height: 705 Feet
Estimated Cost: $5.6 Billion
The Challenges of Dams in Cold Climates

Design, Construction, Permitting and Environmental Issues

Fall 2017 Workshops and Field Tours

PROJECT COST RANGE

- **Minimum** $4.461 Billion
- **5th percentile** $5.040 Billion
- **Base Estimate** $5.655 Billion
- **50th percentile** $5.654 Billion
- **95th percentile** $6.247 Billion
- **Maximum** $6.803 Billion
The Challenges of Dams in Cold Climates
Design, Construction, Permitting and Environmental Issues

Fall 2017 Workshops and Field Tours
PERMITTING, LICENSING AND ENVIRONMENTAL ISSUES

- Technical Issues and Risks
 - Seismic Stability, Safety, Cost

- Social Risks
 - Deliver Net Benefits, Social Opportunities, and Avoid/Mitigate Environmental Effects

- Environmental Issues and Risks
 - Impacts but Potential for Environmental Enhancement

- Economic and Financial Issues and Risks
 - Natural Gas Prices, Capital Cost, and Financing (Bond Rate)
PERMITTING, LICENSING AND ENVIRONMENTAL ISSUES

- Communications and Consultation – FERC Process
- Governance – Communications Protocol
- Demonstrated Need and Strategic Fit – Decision Document
- Siting and Design – Engineering and Feasibility Study
- Environmental and Social Impact Assessment – FERC approved studies
- Integrated Project Management
- Hydrological Resources – Over 60 years of Flow Data
PERMITTING, LICENSING AND ENVIRONMENTAL ISSUES

- Infrastructure Safety - #1 Priority
- Financial Viability – Continuous Evaluation
- Project Benefits – Lower Cost Energy
- Economic Viability – System Evaluations
- Procurement
- Project Affected Communities and Livelihood – Subsistence Assessment/Health Impact
- Resettlement – Not Applicable
PERMITTING, LICENSING AND ENVIRONMENTAL ISSUES

- Indigenous Peoples – Key Consideration
- Labor and Working Conditions
- Cultural Heritage – Under Evaluation
- Public Health - HIA
- Biodiversity and Invasive Species – Northern Pike
- Erosion and Sedimentation
- Water Quality
- Reservoir Planning
- Downstream Flow Regimes
PERMITTING, LICENSING AND ENVIRONMENTAL ISSUES

Tagged Chinook Salmon and Devils Canyon
Only one salmon species has been documented within 30 miles of the project site.

<table>
<thead>
<tr>
<th>Year</th>
<th>Tagged Salmon</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>352</td>
</tr>
<tr>
<td>2013</td>
<td>603</td>
</tr>
<tr>
<td>2014</td>
<td>622</td>
</tr>
</tbody>
</table>

- **Curry**: 23, 18, 11
- **Devils Canyon**: 12, 3, 2
- **Above Devils Canyon**: 6, 0, 1

The Challenges of Dams in Cold Climates
Design, Construction, Permitting and Environmental Issues
Fall 2017 Workshops and Field Tours
2013 Coho Salmon Spawning Distribution by Basin

- **Yentna River Basin**: 45%
- **Chulitna River Basin**: 15%
- **Deshka River Basin**: 10%
- **Talkeetna River Basin**: 5%
- **Lower Susitna River & Other Tributaries**: 20%
- **Middle Susitna River below Devils Canyon**: 5%
- **Susitna River Above Devils Canyon**: 0%

2012-2014: 1,635 tagged Coho
- 93-97% Spawn in Tributaries
- 2.8-6% Spawn in Mainstem Lower Susitna River
- <0.5% Spawn in Mainstem Middle Susitna River

(Merizon 2010) Data Source: LGL (2014)
Historic Middle River Sockeye Salmon Spawning Distribution

- Mainstem: 60%
- Slough 21: 15%
- Slough 11: 20%
- Slough 8A: 4%

Middle River Upstream of Curry Station (0.6-1.7%)

Yentna River Basin ≈30-78%

Chulitna & Talkeetna River Basins Combined ≈21-70%

Sources: Barrett (1974); ADF&G (1981); ADF&G (1982); Barrett (1984); Barrett (1985); Hoffman (1985); Thompson (1986)

Sockeye Salmon Spawning 1974, 1981-85

The Challenges of Dams in Cold Climates
Design, Construction, Permitting and Environmental Issues
Fall 2017 Workshops and Field Tours
The Challenges of Dams in Cold Climates
Design, Construction, Permitting and Environmental Issues

Fall 2017 Workshops and Field Tours
FA 128 minimum daily coho juvenile habitat, 1985

- **Existing conditions**
- **ILF-1**

<table>
<thead>
<tr>
<th>Date</th>
<th>Existing conditions</th>
<th>ILF-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/1/84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/1/84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/1/84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/1/84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/1/84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/1/84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/1/85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/1/85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/1/85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/1/85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/1/85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/1/85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/1/85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/1/85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/1/85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/1/85</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Habitat Area (sq ft)

- 500,000
- 450,000
- 400,000
- 350,000
- 300,000
- 250,000
- 200,000
- 150,000
- 100,000
- 50,000
- 0
This reasonable and stepwise approach is both consistent with the approved study plan and with accepted practices for completing and integrating aquatic and physical process models within the context of a hydroelectric licensing case” (FERC ISR SPD 2017)