Dams and Extreme Events — Reducing Risk of Aging Infrastructure under Extreme Loading Conditions

34th Annual USSD Conference
San Francisco, California, April 7-11, 2014
The Power of More

Demands on dam and levee owners include aging infrastructure and shifting standards. HDR is one of North America’s most comprehensive resources for owners, agencies and operators of dams and hydraulic structures. We can guide you through regulatory and design solutions that sustain both the built and natural environments. From traditional services to cutting edge technologies, HDR’s seamless delivery provides more powerful results.

Keith Ferguson, PE
303.764.1546
keith.ferguson@hdrinc.com

Bob Beduhn, PE
402.399.1090
bob.beduhn@hdrinc.com
Dams and Extreme Events — Reducing Risk of Aging Infrastructure under Extreme Loading Conditions

34th Annual USSD Conference
San Francisco, California, April 7-11, 2014

Hosted by
San Francisco Public Utilities Commission
On the Cover

Aerial view of the Calaveras Dam Replacement Project taken on January 27, 2014. The San Francisco Public Utilities Commission is building a new earth and rock fill dam immediately downstream of the existing dam. The replacement Calaveras Dam will have a structural height of 220 feet. Upon completion, the Calaveras Reservoir will be restored to its historical storage capacity of 96,850 acre-feet or 31 billion gallons of water. The project is the largest project of the Water System Improvement Program to repair, replace and seismically upgrade key components of the Hetch Hetchy Regional Water System, providing water to 2.6 million customers.

U.S. Society on Dams

Vision

To be the nation's leading organization of professionals dedicated to advancing the role of dams for the benefit of society.

Mission — USSD is dedicated to:

• Advancing the knowledge of dam engineering, construction, planning, operation, performance, rehabilitation, decommissioning, maintenance, security and safety;
• Fostering dam technology for socially, environmentally and financially sustainable water resources systems;
• Providing public awareness of the role of dams in the management of the nation's water resources;
• Enhancing practices to meet current and future challenges on dams; and
• Representing the United States as an active member of the International Commission on Large Dams (ICOLD).

The information contained in this publication regarding commercial projects or firms may not be used for advertising or promotional purposes and may not be construed as an endorsement of any product or from by the United States Society on Dams. USSD accepts no responsibility for the statements made or the opinions expressed in this publication.
FOREWORD

Included in these Proceedings are papers presented during the 34th USSD Annual Meeting and Conference, held April 7-11, 2014, in San Francisco, California. A separate book includes abstracts for each paper.

The theme of the 34th USSD Conference was Dams and Extreme Events — Reducing Risk of Aging Infrastructure under Extreme Loading Conditions. The Conference technical program was organized by several USSD Committees under the leadership of Daniel L. Wade, San Francisco Public Utilities Commission. The nation’s 80,000 dams are aging, and more than 75 percent of these facilities are more than 50 years old. However, the criticality of these facilities has increased over time as a result of the ever increasing demands for water, flood control and energy. In addition, many older low and significant hazard dams that were constructed to protect agricultural interests are now protecting people and personal property. As a result, the classifications of many of these structures have changed to high hazard, bringing new costly challenges for owners to retrofit or modify existing dams in response to the new role of the structure.

As dam owners are faced with the decision of either life extension or retirement of aging facilities, a renewed focus on dam safety risk reduction for extreme loading conditions through prudent economic investment is paramount to making wise decisions.

The theme highlights the need for continued innovation in prediction and analysis of loading conditions from extreme events, and the need to apply these advances to make prudent investments to reduce risk and economically meet the ever increasing needs for responsible water resources, flood control, energy and mining projects.

The papers in the Proceedings were selected from abstracts submitted in response to a Call for Papers, and include both oral and poster presentations. Authors are specialists with broad experience from government agencies, utilities, academia, water districts, consulting firms and private industry.

The Conference Organizing Committee extends thanks and appreciation to the San Francisco Public Utilities Commission, Hosts of the 34th Annual Meeting and Conference.

Special thanks are also extended to the Committee Members who selected the abstracts and reviewed the technical papers, and to the authors who prepared the papers included in the Proceedings.
CONTENTS

Earthquakes

Transverse Cracking on Embankment Dams Caused by Earthquakes Revisited 1
Donald H. Babbitt, Consulting Civil/Geotechnical Engineer

Prediction of Seismically-Induced Longitudinal/Transverse Vertical Cracks in
Embankments with Upstream Concave Curvatures . 11
Mohsen Beikaei, Metropolitan Water District of Southern California

Comparison of Liquefaction Susceptibility Criteria . 29
Richard J. Armstrong and Erik J. Malvick, California Department of Water
Resources

Lessons Learned from FLAC Analyses of Seismic Remediation of Perris Dam 39
Steven Friesen, Ariya Balakrishnan and Mike Driller, California Department of
Water Resources; Mike Beaty, Beaty Engineering LLC; and Rajendram
Arulnathan, Erik Newman and Sathish Murugaiah, URS Corporation

Seismic Issues at Scoggins Dam . 57
Ron Oaks and Bryan Scott, Bureau of Reclamation

Risk of Seismic Deformation of a 1930’s Embankment Dam in a Highly Active
Seismic Environment . 79
Justin Phalen and Faiz Makdisi, AMEC Environment & Infrastructure; Lelio
Mejia, URS Corporation; and Michael Mooers, Santa Clara Valley Water District

Influence of Stratigraphic Interfaces on Residual Strength of Liquefied Soil 101
Jack Montgomery and Ross W. Boulanger, University of California, Davis

Implementing Nonlinear Analysis of Concrete Dams and Soil-Structure Interaction
under Extreme Seismic Loading . 113
Mark Schultz, Phu Huynh and Vojislav Cvijanovic, California Department of
Water Resources

Performance-Based Analysis of a Large Concrete Dam . 131
Joshua B. Edelman, Peter J. Orme, Madeline R. Goldkamp, Tamara H.
Savage and Ziyad Duron, Harvey Mudd College; and Mike Knarr, Southern
California Edison Company

Performance-Based Testing of a Large Concrete Dam . 145
Madeline R. Goldkamp, Tamara H. Savage, Joshua B. Edelman, Peter J.
Orme, and Ziyad Duron, Harvey Mudd College; and Mike Knarr, Southern
California Edison Company
Application of Nonlinear Analysis Methods to Hydraulic Structures Subject to Extreme Loading Conditions

Vojislav Cvijanovic, Mark Schultz and Richard Armstrong, California Department of Water Resources

Utilising the Curved Footprint of an 80 Year Old Gravity Dam to Aid Performance during Extreme Earthquakes

Peter Amos and John Black, Damwatch Services Ltd; Roy Dungar, Consultant; and Jim Walker, Meridian Energy Ltd

Cracking Analysis of Concrete Gravity Dams

Abdelkrim Kadid and Ali Zine, University of Batna; and Djarir Yahiaoui, University of Constantine

Finite Element Analysis of Dynamic Behavior of Large Dams

W.P. Kikstra, F. Sirumbal, G. Schreppers and M. Partovi, TNO DIANA BV

An Approach to Evaluating the Dynamic Strength of Soils at Dam Sites

Erik J. Malvick, Richard J. Armstrong, Kristen Martin and Phu L. Huynh, California Department of Water Resources

Probabilistic Liquefaction Hazard Analysis

Mohsen Beikae, Metropolitan Water District of Southern California

Seismic Stability Evaluation of Dam Underlain by Coarse-Grained Alluvium

Lelio Mejia, URS Corporation; Jiaer Wu, CHEC USA, Erik Newman, URS Corporation; and Michael Mooers, Santa Clara Valley Water District

Foundation Liquefaction Evaluation for the Remediation of the Isabella Auxiliary Dam

David C. Serafini, Henri V. Mulder and Vlad G. Perlea, Corps of Engineers

Characterization of Gravelly Soils for Liquefaction Potential Assessment at Dam Sites Using the iBPT

Mason Ghafghazi, Jason T. DeJong, Alexander P. Sturm and Daniel W. Wilson, University of California, Davis; Craig Davis and Adam Perez, Los Angeles Department of Water and Power; and Richard Armstrong, California Department of Water Resources

Current Seismic Tools Used to Evaluate a 1914 Concrete Arch Dam

Dina Bourlia Hunt, Bashar Sudah, Jennifer Fordney, Glenn Tarbox and David Thompson, MWH Global; and Scott Willis, Alaska Electric Light & Power Company
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embankment Dams</td>
<td></td>
</tr>
<tr>
<td>Adverse Geological Conditions and Piping Practical Considerations when Evaluating Seepage</td>
<td>315</td>
</tr>
<tr>
<td>Ray E. Martin, REM, LLC; and Joseph S. Monroe, Schnabel Engineering, Inc.</td>
<td></td>
</tr>
<tr>
<td>Proposed Retrofit Concepts for Chabot Dam</td>
<td>327</td>
</tr>
<tr>
<td>Sean Todaro, Atta Yiadom and Catherine Anderson, East Bay Municipal Utility District</td>
<td></td>
</tr>
<tr>
<td>Laboratory Modeling of Soil Erosion into Bedrock Defects</td>
<td>345</td>
</tr>
<tr>
<td>John D. Rice, Utah State University; Kenneth E. Henn, Corps of Engineers; and John W. Kovacs and Brian H. Greene, Gannett Fleming, Inc.</td>
<td></td>
</tr>
<tr>
<td>Some Findings from the ICOLD Bulletin on Internal Erosion in Existing Dams</td>
<td>363</td>
</tr>
<tr>
<td>Rodney Bridle, Dam Safety Ltd</td>
<td></td>
</tr>
<tr>
<td>Right Abutment Seepage Mitigation at Ochoco Dam</td>
<td>379</td>
</tr>
<tr>
<td>Dennis L. Hanneman, Bureau of Reclamation; and Mark Pabst, Corps of Engineers</td>
<td></td>
</tr>
<tr>
<td>Probabilistic Constriction Size Application for Earth Dam/Levee Filter Design</td>
<td>395</td>
</tr>
<tr>
<td>Sangho Lee, GESTRA Engineering Inc.; and Samuel S. Lee, Federal Energy Regulatory Commission</td>
<td></td>
</tr>
<tr>
<td>Evaluating the Mechanics of Piping Erosion Initiation Through Laboratory Modeling</td>
<td>407</td>
</tr>
<tr>
<td>John Rice and Mandie Fleshman, Utah State University</td>
<td></td>
</tr>
<tr>
<td>Dam Abutment Seepage Investigation and Erosion Repair</td>
<td>421</td>
</tr>
<tr>
<td>Michael McCaffrey, Parsons Brinckerhoff; Mark J. Gross, Alcoa Power Generating Inc.; and Tony Plizga and Paul F. Shiers, Parsons Brinckerhoff</td>
<td></td>
</tr>
<tr>
<td>Hydraulics</td>
<td></td>
</tr>
<tr>
<td>A Screening Tool for Identifying Potential Downstream Hazards</td>
<td>433</td>
</tr>
<tr>
<td>Lissa Robinson and Chris Karam, GEI Consultants, Inc.; and Robert White and Luyin Zhu, Pacific Gas & Electric Company</td>
<td></td>
</tr>
<tr>
<td>Poe Dam Radial Gate Strengthening Project: Challenge Accepted</td>
<td>445</td>
</tr>
<tr>
<td>Robert T. Indri, Schnabel Engineering, Inc; Mohammad Aslam, Pacific Gas & Electric Company; Chris Cornell, Syblon-Reid Construction; Keith De Lapp, HDR Engineering, Inc.; Stephen Hom, URS Corporation; and Frederick Lux, Aubian Engineering, Inc.</td>
<td></td>
</tr>
<tr>
<td>U.S. Army Corps of Engineers Tainter Gate Retrofits for Extreme Load Cases</td>
<td>465</td>
</tr>
<tr>
<td>Gavin Smith and Matt D. Hanson, Corps of Engineers</td>
<td></td>
</tr>
</tbody>
</table>
System Reliability Analysis of Rock Scour 477
Michael F. George, Nicholas Sitar and Armen Der Kiureghian, University of California, Berkeley

Increasing the Flood Capacity of a 95 Year Old Dam 495
Kevin Finn, Parsons Brinckerhoff; John Vallee, Brookfield Renewable Power; and Marc Buratto and Bryce Mochrie, Parsons Brinckerhoff

Design Flood Determination for the Victoria Dam Spillway Improvement Project . . 505
Ben Trotter, Integrys Business Support, LLC; Raymond Wingert, HDR Engineering, Inc.; and Virgil Schlorke, Upper Peninsula Power Company

Snowmelt Hydrology in the Libby Dam Probable Maximum Flood Computation . . 519
Kevin Fagot and Henry Hu, WEST Consultants, Inc.

Calculating Probable Maximum Precipitation in Complex Terrain: Updating HMR 59 for California .. 531
Ed Tomlinson and Bill Kappel, Applied Weather Associates, LLC

Selecting and Accommodating Inflow Design Floods for Dams: A Behind-the-Scenes Look at Updating Federal Guidance 551
Paul G. Schweiger and Gregory L. Richards, Gannett Fleming, Inc.; Arthur Miller, AECOM; James E. Demby, Federal Emergency Management Agency; and Amanda J. Hess, Gannett Fleming, Inc.

Comparison of 2-Dimensional Hydraulic Models for Assessing Levee Breach Inundations .. 565
Chris Bahner, WEST Consultants, Inc.

2-Dimensional Dam-Break Inundation Modeling Provides Better Information for Risk and Emergency Planning 587
Tom Molls and Brian Brown, David Ford Consulting Engineers, Inc.; Mark Fortner, GEI Consultants, Inc.; and David Panec, California Department of Water Resources

Urban Reservoir Breach Analysis and Flood Inundation Mapping 601
Dragoslav Stefanovic, Pedro Miguel Parames and Martin J. Teal, WEST Consultants, Inc.

Ohio Statewide PMP Study — Replacing HMR 51: Methods, Processes, Results . . . 611
Bill Kappel, Ed Tomlinson and Doug Hultstrand, Applied Weather Associates, LLC

Construction and Rehabilitation

Embankment Dam Seepage Modifications — Choices and Considerations 633
John W. France, URS Corporation
Rehabilitation of the Fort Randall Dam Spillway .. 653
Clinton L. Powell, Corps of Engineers

Gilboa Dam — Major Reconstruction to Withstand Extreme Events (and Getting One) .. 689
Boyd Howard, Gannett Fleming, Inc.; Emory Chase and Thomas DeJohn, New York City Department of Environmental Protection; and Aaron Rietveld, Barnard-D.A. Collins JV

Making Do with What You Have at the Long Hollow Dam Project 705
Rick Ehat, La Plata Water Conservancy District; Chad Masching, GEI Consultants, Inc.; and Aaron Chubbuck, Weeminuche Construction Authority

Emergency Repairs to ODNR's Dam No. 6 — Muskingum Lock and Dam System, Stockport, Ohio ... 721
Pete Nix, Tetra Tech

Rehabilitation Technologies to Respond to Changing Loading Conditions at a 114 Year Old Structure ... 731
Bryce Mochrie, Parsons Brinckerhoff; Lee Talbot, Brookfield Renewable Power; and Kevin Finn and Peter Bouchie, Parsons Brinckerhoff

Lower Crystal Springs Dam Improvements Project ... 741
Myron Humeny, San Francisco Department of Public Works; Tasso Mavroudis, San Francisco Public Utilities Commission; Marty Czarnecki, URS Corporation; Chu Liu, San Francisco Department of Public Works; and Noel Wong, URS Corporation

Alliance Contracting: A Flexible Approach to Promote Innovation and Deal with Uncertainty .. 755
David Murray, CDM Smith Australia Pty Ltd

Water Over the Dam — RCC Dams/Cofferdams Performance When Overtopped During Construction .. 767
Kenneth D. Hansen, Consulting Engineer; and Daniel L. Johnson, Tetra Tech, Inc.

Los Alamos Canyon Dam: Development of RCC Mix Designs and Construction Challenges ... 787
Henrik Forsling and Scott Jones, URS Corporation; Tim Glasco, County of Los Alamos; and Bud Werner, CTL|Thompson Materials Engineers, Inc.

Construction Techniques for RCC Placement — San Vicente Dam Raise 799
Frank Collins, Parsons; Gerard E. Reed III and Wade Griffis, San Diego County Water Authority; Jim McClain, Black & Veatch Corporation; and Richard Burdette, Parsons
Construction of La Romaine Complex in Northern Quebec, Canada: Five Years of Great Accomplishments ... 833
Vlad Aliescu, Hydro-Québec

We Got How Much Rain? Emergency Repairs at East Reservoir Dam 857
Pete Nix and Steven Riedy, Tetra Tech

Concrete Dams

Earthquake Analysis of Concrete Gravity Dams: Factors To Be Considered 869
Anil K. Chopra, University of California, Berkeley

Evaluation of Morrow Point Dam and Potentially Removable Foundation Block Using Risk ... 881
Phoebe Percell, Bureau of Reclamation

Comparison of Recorded and Computed Earthquake Response of Arch Dams 897
Anil K. Chopra, University of California, Berkeley

Tensile Strength of Mass Concrete — Implication of Test Procedures and Size Effects on Structural Analysis of Concrete Dams 913
Timothy Dolen, Dolen and Associates; David W. Harris, Consultant; and Larry K. Nuss, Nuss Engineering

Monitoring

Updating Existing Instrumented and Visual Monitoring Plans Following a Potential Failure Modes Assessment .. 939
Bruce R. Rogers, Corps of Engineers; Jay N. Stateler, Bureau of Reclamation; and Manoshree Sundaram, MWH

Diamond Valley Lake Automated Data Acquisition System Upgrade 949
Evelyn Ramos and Christopher Hill, Metropolitan Water District of Southern California

Rehabilitation of Piezometers at the Blenheim-Gilboa Pumped Storage Project — Restoring a “Classic”: ... 961
John G. DeLano and James P. Guarente, GZA GeoEnvironmental, Inc.; Robert J. Knowlton, Junyu Liang and David Weiman, New York Power Authority; and Chad W. Cox, GZA GeoEnvironmental, Inc.

Accuracy of Stress Data Measured by Earth Pressure Cells Installed in Embankment Dams ... 977
Abolfazl Hojjat Ansari and Ali Asghar Mirghasemi, University of Tehran
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluating In-Situ Stress Behavior in Alkali-Silica Reactive Dams:</td>
<td>991</td>
</tr>
<tr>
<td>Roanoke Rapids Dam</td>
<td></td>
</tr>
<tr>
<td>Brian R. Reinicker and Farzad Abedzadeh, HDR Engineering, Inc.;</td>
<td></td>
</tr>
<tr>
<td>Robin G. Charlwood, Robin Charlwood & Associates, PLLC; and John A.</td>
<td></td>
</tr>
<tr>
<td>Cima, Dominion Resources Services, Inc.</td>
<td></td>
</tr>
<tr>
<td>Remote Technology Provides a Safe Alternative for Dam Face Assessment</td>
<td>1003</td>
</tr>
<tr>
<td>Richard Engel, ASI Group Limited</td>
<td></td>
</tr>
<tr>
<td>Detection of Weakness Zones in Helena Levee, AR, Using Ground</td>
<td>1015</td>
</tr>
<tr>
<td>Penetrating Radar</td>
<td></td>
</tr>
<tr>
<td>Hussein Khalefa Chlaib, M. Mert Su, Najah Abd, Aycan Catakli, Hanan</td>
<td></td>
</tr>
<tr>
<td>Mahdi and Haydar Al-Shukri, University of Arkansas at Little Rock</td>
<td></td>
</tr>
</tbody>
</table>

Levees

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Comparison of the FOSM-BT Method to a More Rigorous Reliability</td>
<td>1031</td>
</tr>
<tr>
<td>Method</td>
<td></td>
</tr>
<tr>
<td>John Rice and Lourdes Polanco, Utah State University</td>
<td></td>
</tr>
<tr>
<td>A Method for Estimating Soil Properties for Transient Seepage</td>
<td>1047</td>
</tr>
<tr>
<td>Analyses of Levees</td>
<td></td>
</tr>
<tr>
<td>Matthew D. Sleep, Oregon Institute of Technology</td>
<td></td>
</tr>
<tr>
<td>Cutoff Wall Remediation</td>
<td>1065</td>
</tr>
<tr>
<td>Rich Millet, URS Corporation; and Mary Perlea, Corps of Engineers</td>
<td></td>
</tr>
<tr>
<td>Geotechnical Challenges and Design Approach for the Feather River</td>
<td>1079</td>
</tr>
<tr>
<td>West Levee in California</td>
<td></td>
</tr>
<tr>
<td>Khaled Chowdhury, URS Corporation; Derek Morley, Corps of Engineers;</td>
<td></td>
</tr>
<tr>
<td>Leslie Harder Jr., HDR Engineering, Inc. Michael Hughes, Robert Green,</td>
<td></td>
</tr>
<tr>
<td>Francke Walberg and Matthew Weil, URS Corporation; and Mike Inamine,</td>
<td></td>
</tr>
<tr>
<td>Sutter Butte Flood Control Agency</td>
<td></td>
</tr>
<tr>
<td>Levee Reliability: How Do We Know When We Need a New Levee?</td>
<td>1103</td>
</tr>
<tr>
<td>Brian Hubel, Black & Veatch Corporation, and Carmen Berry, Civil</td>
<td></td>
</tr>
<tr>
<td>Engineer</td>
<td></td>
</tr>
<tr>
<td>Logan Martin Dam, Alabama: 45 Years of Remedial Grouting</td>
<td>1117</td>
</tr>
<tr>
<td>Donald A. Bruce, Geosystems, L.P.; Brian H. Greene, Consulting</td>
<td></td>
</tr>
<tr>
<td>Engineering Geologist; and Bobby E. Williams and John H. Williams,</td>
<td></td>
</tr>
<tr>
<td>Southern Company</td>
<td></td>
</tr>
<tr>
<td>Applicability of Levee Fragility Functions Developed from Japanese</td>
<td>1131</td>
</tr>
<tr>
<td>Data to California’s Central Valley</td>
<td></td>
</tr>
<tr>
<td>Dong Youp Kwak and Scott J. Brandenberg, University of California,</td>
<td></td>
</tr>
<tr>
<td>Los Angeles; Atsushi Mikami, The University of Tokushima; Ariya</td>
<td></td>
</tr>
<tr>
<td>Balakrishnan, California Department of Water Resources; and Jonathan</td>
<td></td>
</tr>
<tr>
<td>P. Stewart, University of California, Los Angeles</td>
<td></td>
</tr>
</tbody>
</table>
Draft Guidelines for Seismic Evaluation of Levees 1145
Vlad Perlea, Mary Perlea and George Hu, Corps of Engineers; and Khaled Chowdhury, URS Corporation

Needs-Oriented Project Evaluation Tool (NOPET) 1165
David Moore, Tetra Tech; Dwayne Bourgeois, North Lafourche Conservation Levee and Drainage District; and Patti Sexton, Tetra Tech

Dam Safety

Lessons Learned from Concrete Dam Failures Since St. Francis Dam 1179
Larry K. Nuss, Nuss Engineering, LLC; and Kenneth D. Hansen, Consulting Engineer

Development of a Functional Exercise to Maximize Public Safety Cooperation and Emergency Preparedness 1203
Justin Darling, Northern Indiana Public Service Company

Pine Creek Dam Risk Management Plan Process and Decision 1217
Kathryn A. White and D. Wade Anderson, Corps of Engineers

A Risk Assessment with the FERC ... 1237
Guy S. Lund, URS Corporation; and Bill Christman and Gene Yow, Chelan County Public Utility District No. 1

What is the Most Important Loading Condition for Dam Safety? 1255
William Engemoen, Daniel Osmun and William Fiedler, Bureau of Reclamation

Anderson Dam Seismic Retrofit Project: Utilizing Project Risk Analyses to Support Management Decisions 1267
Emmanuel Ayree, Santa Clara Water District; and Brian Hubel and Chris Mueller, Black and Veatch

ISO Standards Applied to Dam Sector Security Risk Methodologies 1283
William F. Foos, Gannett Fleming, Inc.; and Joachim A. Gloschat, Consultant

Reexamination of the 2004 Failure of Big Bay Dam, Georgia 1303
Keith A. Ferguson, Scott Anderson and Elena Sossenkina, HDR Engineering, Inc.

Addicks and Barker Dam Safety Modifications Project 1337
Bobby Van Cleave, D. Wade Anderson, Gary Chow and Andrew Weber, Corps of Engineers

Spillway Modification to Address Potential Failure Mode 1363
John C. Stoessel, Southern California Edison Company; Craig McElfresh, MCS Construction, Inc.; C. Micheal Knarr, Consulting Civil Engineer
Reclamation’s New Life Loss Estimating Methodology

William Fiedler, Daniel Osmun, William Engemoen and Bruce Feinberg, Bureau of Reclamation

Why Are Dams Failing Before They Reach Their Spillway Design Capacity?

Eric Gross and David W. Lord, Federal Energy Regulatory Commission

Robustness and Consequence Based Assessment of an Existing Dam

Valerio De Biagi and Bernardino Chiaia, Politecnico di Torino; and Alessandro Calvi and Francesco Fornari, ENEL Production S.p.A

Tailings Dams

- **CPTu-Based State Characterization of Tailings Liquefaction Susceptibility**

 Christina Winckler, Richard Davidson and Lisa Yenne, URS Corporation; and Joergen Pilz, Rio Tinto T&I

- **Pore Pressure Characterization of Impounded Tailings**

 Christina Winckler, Richard Davidson and Lisa Yenne, URS Corporation; and Matt Gallegos, Rio Tinto

- **Two-Dimensional Numerical Analysis of Dynamic Response of a Tailings Dam Using UBCSAND Model: A Case Study**

 José Zuta, Itasca S.A.; Varun, Azadeh Riahi and Loren Lorig, Itasca Consulting Group Inc.

Environment/Public Awareness

- **Cobbs Creek Reservoir and Dam: Offline Storage — Capturing Today’s Water for Tomorrow’s Demand**

 Mark E. Landis, Schnabel Engineering, Inc.; Paul E. Peterson, ARCADIS US, Inc.; and Jonathan M. Pittman, Schnabel Engineering, Inc.

- **Determining the Feasibility of Fish Passage — Calaveras Dam Replacement Project, California**

 Jonathan Stead and Steve Leach, URS Corporation; and Craig Freeman and Susan Hou, San Francisco Public Utilities Commission

- **Securing Approvals for Large Scale Spoils Disposal at a Dam Replacement Project**

 Steve Leach and John Roadifer, URS Corporation; and Craig Freeman, Dan Wade and Susan Hou, San Francisco Public Utilities Commission
Foundations

Traditional Cement Grouts Versus Stable, High-Mobility Grout — A Case Study at the Crafton Hills Dams

Holly Nichols, Ante N. Mlinarevic and G. Robert Barry, California Department of Water Resources

Foundation Improvements — Design and Construction for the New Ragged Mountain Dam

Randall P. Bass and J R. Collins, Schnabel Engineering, Inc.

Treatment of Gravity Dam Foundations During Construction

Building an RCC Dam on a Karstic Foundation and a Tight Schedule

Victor M. Vasquez, Tina Stanard, Mathew L. Moses, M. Leslie Boyd and Adam Payne, Freese and Nichols, Inc.

Slope Stability, Geology, and Rock Reinforcement, Folsom Auxiliary Spillway Joint Federal Project, CA

Kylan A. Kegel and Tatia R. Taylor, Corps of Engineers

Effective Surveillance and Monitoring Allows a Phased Approach to Stabilization

Gerald Robblee, Andy Baxter, Robert Cannon and Jesus Gomez, Schnabel Engineering, Inc.; and Adam J. Monroe, Consumers Energy

Lunch Presentations

Generation YP: Increasing Young Professional Involvement in Dam Safety

Emily Schwartz, HDR Engineering, Inc.; Amanda Sutter, Corps of Engineers; and Elena Sossenkina, HDR Engineering, Inc.

Engineering Geologic Conditions at the Calaveras Dam Replacement Project, Alameda County, California

Keith Kelson, Phil Respess and Erik Newman, URS Corporation; and Daniel Wade, Susan Hou and Gilbert Tang, San Francisco Public Utilities Commission

Update on the Calaveras Dam Replacement Project

Michael Forrest and John Roadifer, URS Corporation; and Daniel L. Wade, Susan Hou and Gilbert Tang, San Francisco Public Utilities Commission

Dam Foundations & Differing Site Conditions — Calaveras Dam Replacement Project

Jeffrey M. Bair, Terence M. King and Christopher G. Mueller, Black & Veatch Corporation; and Daniel L. Wade and Susan S. Hou, San Francisco Public Utilities Commission